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The transition from regular to Mach reflexion and from 
Mach to regular reflexion in truly non-stationary flows 
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An experimental investigation on the IHSM 4 x 8 cm Shock Tube has confirmed the 
hypothesis of Ben-Dor (1978) and Ben-Dor & Glass (1979) that in truly non-stationary 
flows the transitions from regular to Mach reflexion (RR-+MR) and from Mach to 
regular reflexion (MR -+ RR) are different. Consequently it is shown that a hysteresis 
loop exists in the RR 2 MR transition phenomenon. 

1. Introduction 
The reflexion of oblique shock waves is a nonlinear problem which has been 

investigated analytically and experimentally by many researchers. Four different 
shock-wave reflexions have been observed in pseudo-steady flows in shock tubes 
over two-dimensional straight wedges. They are (figure 1 ) ;  ( a )  regular reflexion (RR); 
(b)  single-Mach reflexion (SMR); ( c )  complex-Mach reflexion (CMR); and ( d )  double- 
Mach reflexion (DMR). Owing to the geometry of the models used to reflect oblique 
shock waves in a steady flow, CMR and DMR cannot materialize in steady flows, 
even though the flow behind the reflected shock wave can be supersonic (Ben-Dor 
1978, 1980), and hence, only RR (figure 2a)  and S&R (figure 2 b )  are possible. 

Although RR and SMR were discovered more than 100 years ago (Mach 1878), 
almost no work was done on this problem until von Neumann (1963) re-initiated the 
problem in the early 40’s. The intensive investigation that followed von Neumann’s 
work finally led to  the discovery of CMR by Smith (1945) and DMR by White (1951). 
Since then investigators were mostly interested in establishing the correct transition 
criterion between the various reflexions. 

SMR transition. 
Since it was found throughout the past years that the termination of RR can result in, 
in pseudo-stationary flows, SMR, CMR or DMR, the notation RR 2 MR (MR indi- 
cates Mach reflexion) will be used in the following. A detailed discussion on whether 
SMR, CMR or DMR form when RR terminates is given by Ben-Dor & Glass (1970). 
Until 1975, two different criteria existed for the transition RR 2 MR. This transition 
was regarded as equivalent for both steady and non-stationary flows which could be 
made pseudo-steady by attaching the frame of reference to the incident shock wave. 

These two criteria (see subsequent discussion) are known as the ‘detachment ’ 
criterion of von Neumann (1963) and the ‘mechanical-equilibrium ’ criterion of 

Naturally, the first transition to be investigated was the RR 
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FIGURE 2. Illustration of possible oblique shock wave reflexions in steady flows: (a) regular 
reflexion (RR) ; (b) single-Mach reflexion (SMR). 

Henderson & Lozzi (1975). Recently, Hornung, Oertel & Sandeman (1979) forwarded 
a new criterion, the 'length scale' criterion, that resulted in different transition lines 
for steady and pseudo-steady flows. In  a detailed investigation of the reflexion 
phenomena in non-stationary (pseudo-steady) flows, Ben-Dor (1978) and Ben-Dor & 
Glass (1979) forwarded a hypothesis concerning the RR 2 MR transition in truly 
non-stationary flows. By truly non-stationary flows, we mean flows which cannot be 
made pseudo-steady. They hypothesized (see subsequent discussion) that in truly 
non-stationary flows the RR + MR transition need not be the same as the MR -+ RR 
transition. The main assumption behind the hypothesis is that once RR or MR is 
formed, and then 0, or ill, is changed gradually to cause transition to MR or RR, the 
original reflexion (RR or MR) will terminate only when physically it becomes im- 
possible for it to exist. 

Using streak camera technique with curved slits, we were able to verify the hypothe- 
sis of Ben-Dor (1978) and Ben-Dor & Glass (1979). It was found that in truly non- 
stationary flows the RR + MR transition is indeed different from the MR -+ RR tran- 
sition criterion. For example, a t  M, = 4 the RR -+ MR transition occurs at  a wedge 
angle 0, z 40" while the MR + RR transition takes place at  8, z 65'. 
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(a ) 

FIGURE 3. Incident ( I )  and reflected (R) shock-polar combination illustrating the different 
R R z M R  transition criteria. Imperfect nitrogen M, = 4.00, Po = 15 torr, To = 300 K. For 
clarity, letters a to f indicate transition paths and thermodynamic states. R,, 0; = 60.00°, 
M, = 2.00; R,,, 'mechanical-equilibrium' criterion, @I, = 56.42", M, = 2-21; R,,,, 0; = 5246", 
M, = 2.43. Rip, 'detachment' criterion, 0; = 49.99, M, = 2.57. Note all polars are accurately 
drawn to scale for given conditions. 

2. Present status of the RRZMR transition criterion in steady and pseudo- 
steady flows 

Three different criteria for the transition RR Z MR exist in the literature. The most 
quoted criterion is due to von Neumann (1963), and is based on the fact that in RR the 
deflexion of the flow, B,, by the reflected shock wave R is equal in magnitude but 
opposite in sign to the deflexion 8, by the incident shock wave I. Therefore, 8, -t- 8, = 0. 
This is violated when 8, exceeds in magnitude the maximum deflexion angle 02m. This 
criterion that is referred to as the detachment criterion (the term detachment comes 
from steady flows where the oblique shock-wave detaches at this angle) has the follow- 
ing analytical form: 

(1)  

The detachment criterion can be illustrated best by using the pressure-deflexion 
(P, @-shock polars. Consider figure 3, where the I and R polars represent the incident 
and reflected shock waves, respectively. Since the net deflexion through a RR is zero 
state (2) behind R (figures l a  and 2a) is a t  the point where the R polar intersects the 

el + e,, = 0. 
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P/Po axis, e.g., point d on Ri (figure 3). As the angle 8, increases the R polar moves 
away from the PIP, axis until it becomes tangent to it (point f on Ri.,). Upon a further 
increase in the R polar does not intersect the P/Po axis anymore and a R R  is not 
possible. Consequently, the detachment criterion is illustrated by the Ri, polar. 

Due to disagreement between the experiments of Smith (1945) and others and the 
detachment criterion a t  very weak incident shock waves, alternative criteria were 
sought by various investigators. Henderson & Lozzi (1 975) introduced an alternative 
criterion which has the property that the system always remains in mechanical 
equilibrium (i.e., no pressure discontinuities). Consider figure 3 and note that once R R  
terminates and MR forms, the solution moves from a RR a t  the point where the R 
polar is tangent to the PIP, axis (point f on Ri,) to a MR at the point where the I and 
the R polars intersect (point a on Ri,). Consequently, a pressure change (from Pf to Pa), 
is associated with the transition, if the detachment criterion is accepted. Henderson & 
Lozzi (1975) argue that ‘a system which develops a pressure discontinuity during 
transition cannot be in mechanical equilibrium ’. Furthermore, they say that ‘if a dis- 
continuity occurs during transition than an unsteady wave of finite amplitude or a 
finite amplitude band of waves will be generated in the flow. These would be expansion 
[waves] for R R  --f MR and compression [waves] for MR+RR.’ Since these waves have 
never been observed experimentally and since the detachment criterion failed to agree 
with their experiments they abandoned the detachment criterion and suggested an 
alternative. Their alternative criterion, the ‘ mechanical-equilibrium ’ criterion 
enables the system to remain in mechanical equilibrium during transition. They 
argued that in order to maintain the system in mechanical equilibrium, the RR 2 MR 
transition should take place a t  the point where the R polar intersects the I polar 
(MR solution) a t  the same point where it intersects the PIP, axis (RR solution) as 
illustrated by point c on the Rii polar of figure 3. Consequently, the mechanical- 
equilibrium criterion implies that  

8,+8, = 8, = 0, 

where O3 is the deflexion of the flow while passing through the Mach stem. Consider 
now polar Riii (figure 3) and note that according to the mechanical-equilibrium 
criterion, a MR will take place a t  point b,  since the transition criterion described by 
Rii has been exceeded. However, according to the detachment criterion a RR will 
occur a t  point e since the transition criterion described by Ri, has not been reached. 
For all th.e polar combination between Rii and Ri,, R R  and MR are theoretically 
possible. Figure 4 illustrates the size of the dual-solution region in the M,, 8; plane 
(8; = 8, + x, where x is the triple-point trajectory angle). It is seen that the area of 
disagreement between the mechanical equilibrium and detachment criteria is very 
large. 

Although Henderson & Lozzi ( 1975) reported that excellent agreement was 
obtained between the mechanical-equilibrium criterion and their wind-tunnel 
experiments, there are unfortunately some diffjculties concerning it. 

First of all, it does not apply over the entire range of M, > 1 (Ma = Ms cosec 6;). 
The condition given by equation (2) is not always possible. Kawamura & Saito (1956) 
showed that for flow Mach number M, smaller than a certain ‘change-over’ value 
M,,, the R polar becomes tangent to the P/P, axis inside the I polar, and the situation 
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FIGURE 4. Comparison between the ‘detachment ’ and the ‘ mechanical-equilibrium’ criteria for 
RR termination in the M,, 6‘; plane, imperfect nitrogen Po = 15 torr, To = 300 K. 

described by (2) is unobtainable. The precise value ofMoc is still not clear since different 
values are reported by different investigators (see Ben-Dor & Glass 1979 for details). 
For a diatomic gas M, = 2.20 & 0.03 while for a monatomic gas Mo, = 2.46& 0.01. 
Consequently, t h e  mechanical-equilibrium criterion exists only for M,, 2 BOc. Un- 
fortunately, the detachment criterion which does exist in the range i < Mo 6 Moc 
disagrees completely with the experiments of Smith (1945), Bleakney & Taub (1949), 
White (1951), Kawamura & Saito (1956), Henderson & Lozzi (1975) and others. Con- 
sequently, the RR 2 MR transition criterion in the range i < M, < MW is unknown, 
and hence, yet to be found. 

Second, the attempt of Henderson & Lozzi (1975) to substantiat,e their idea in 
pseudo-steady (shock-tube) flows revealed, as they say, a ‘remarkable anomaly’ 
between their results from wind-tunnel and shock-tube experiments with single, 
two-dimensional straight wedges, where RR continued to exist in the shock-tube 
experiments beyond the perfect-gas limit predicted by both the detachment and the 
mechanical-equilibrium criteria. Henderson & Lozzi ( 1975) resolved the anomaly by 
advancing that the RR configurations observed beyond the limit predicted by their 
criterion were undeveloped DMR configurations in which all the shock waves, 
slipstreams and triple-points typical of a well-developed DMR (figure 1 d )  were too 
close together to be observed. Some criticism concerning this hypothesis was given by 
Ben-Dor & Glass (1979) and hence its validity needs further proof. 



152 G .  Ben-Dor, K .  T a k a y a m  and T. Kawauchi 
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( b )  

FIUURE 5. Communication of a scale length I ,  to  the reflexion point P :  (a) non-stationary flow; 
( b )  steady flow. 

Auld & Bird (1976) who decided to approach the RR 2 MR transition problem 
numerically arrived a t  a similar conclusion. They studied the transition numerically 
in steady flows in the region where both RR and SMR are theoretically possible (the 
region between Rii and Ri, of figure 3). Their calculation was carried out a t  the molecu- 
lar level using a direct simulation Monte-Carlo method. Since a RR was established in 
the ‘dual-solution region ’ in both monatomic and diatomic steady flows, Auld & Bird 
(1976) concluded that ‘the recent conclusion [of Henderson & Lozzi (1975)] that Mach 
reflexion [MR] always occurs in the overlap region (figure 4) requires further study’. 
They suggested furthermore that ‘low density wind tunnel results that resolve the 
wave structure of the reflexion point would be particularly useful ’. 

Hornung et al. (1 979) initiated recently another criterion for the termination of RR. 
They argued that in order for a MR to form, i.e. a curved Mach stem to establish, a 
length scale must be available a t  the reflexion point, i.e., pressure signals must be 
communicated to the reflexion point P of a R R  (figures 1 a and 2a).  This single argu- 
ment eventually led to two different termination lines for RR depending on whether 
the flow under consideration is steady or pseudo-steady. 

Consider the pseudo-steady RR in figure 5 (a )  and note that the length 1, can affect 
the reflexion point P only when a subsonic flow is established between Q and P (in a 
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Type of flow ... Steady flow Pseudo-steady flow 

Investigators 
A \ r  A 

\ 

Mo < Mo, Mo > Moc Mo < Mot Mo ’ Moc 
Henderson &, Lozzi Unknown 8,+8, = 0, = 0 Unknown o,+o, = e, = o 

(1975) 

Hornung et al. 
(1979) 

e1+02, = o e,+e, = o, = o ol+02, = o ol+e,, = o 

TABLE 1. R R z M R  transition criteria in steady and pseudo-steady flows. 

frame of reference attached to P). In  a steady flow (figure 5 b )  the length 1, can effect the 
reflexion point P only if a propagation path exists between point Q and point P via the 
expansion wave a t  Q’. This is possible only if the flow between P and Q’ is subsonic. 
According to Hornung et al. (1979) this could happen if a MR existed since the flow 
behind the Mach stem is subsonic. Consequently, they argue that transition takes 
place the very first time MR becomes theoretically possible. Consider figure 3 and note 
that this corresponds t o  point c on Rii, which also corresponds to the mechanical- 
equilibrium criterion of Henderson & Lozzi (1 975). 

Thus, the analysis of Hornung et al. led to two different termination lines. In steady 
flow it predicts transition at the same point where the mechanical-equilibrium criterion 
of Henderson & Lozzi (1975) does, and in pseudo-steady flows it predicts transition at:  

(3) 

Note that the transition lines described by equation (1) and (3) are almost identical. 
They are too close together to be resolved experimentally. Consequently, the above- 
mentioned disagreement between experiments and the detachment criterion a t  weak 
incident shock waves, is still not resolved. Even the inclusion of real-gas effect (Ben- 
Dor 1978; Ben-Dor & Glass 1979) does not account in this rmge of Mach numbers for 
the persistence of RR beyond the limit predicted by the perfect gas theory. 

M,, 
it is described by (2) and for M, < M,, it reduces to the ‘sonic ’ criterion, i.e. RR 2 MR 
transition occurs when the flow behind the reflected shock wave R becomes subsonic. 
Analytically, the sonic criterion can assume one of the following forms in the region 
M, < Moc: 

el + e,, = 0. 

The ‘ length-scale ’ criterion has different formulations in steady flows. For Mo 

el+ezs = 0, M, = 1. (4a, b )  

In  pseudo-steady flows, equations (1) or (4) is the transition criterion for the entire 
range of Mo. For this case the flow behind R (figure 1 a )  should be subsonic with respect 
to the reflexion point P, i.e. 

MZp = 1. (4c) 

The foregoing discussion concerning the RR 2 MR transition criterion is sum- 
marized in table 1. It can be seen that while Henderson & Lozzi (1975) regard the 
transition criteria to be identical for steady and pseudo-steady flows, Hornung et al. 
(1979) suggest different criteria. As a matter of fact Henderson & Lozzi’s and Hornung 
et al.’s RR 2 MR transition criteria agree only for steady flows in the range Mo > Moc. 
Recall that the difference between their transition lines in pseudo-steady flows is shown 
in figure 4. 
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3. The RR 2 MR transition in truly non-stationary flows 
As mentioned earlier, Ben-Dor (1978) and Ben-Dor & Glass (1979) hypothesized 

that once a reflexion (RR or MR) is established in a truly non-stationary flow (a flow 
which cannot be made pseudo-steady) and either 41, or 8 ,  are changed continuously 
to force transition, the original reflexion will terminate onlywhen it becomes impossible 
for it to exist. Consider figure 3 and note that if one starts with a given MR a t  point a 
and the wedge angle is increased slowly, the hypothesis suggests that states a (MR), 
b (MR), c (MR 4 RR) and d (RR) will be encountered. However, if one starts with a 
given RR a t  point d, and 8, is decreased gradually, the hypothesis suggests that  states 
d (RR), c (RR), e (RR), f (RR) a n d a  (MR) will be encountered. Note that  the former 
sequence of events follows a continuous transition at point c while the latter path 
undergoes a discontinuous transition from point f to a.  If proved correct, the hypothe- 
sis suggests that a hysteresis exists in the RR 2 MR transition process, i.e., if one 
starts at point a with a MR and the wedge angle is first increased to cause transition to 
RR and then decreased to force the reflexion back to the original MR, the following 
states will be encountered: a (MR), b (MR), c (MR-tRR), d (RR), c (RR), e (RR), 
f (RR), a (MR). The hysteresis loop is described on figure 3 by states a, c and f. Con- 
sider figure 4 and note that if one starts with a MR below the detachment transition 
line and 8; (or 8,) is increased the transition MR -+ RR will occur upon passing through 
the mechanical-equilibrium transition line. If now 8; is decreased the RR will ter- 
minate at the detachment criterion, and MR will form. 

In  view of the foregoing discussion it seems appropriate to call this criterion, (if 
proved correct) the 'inertia' criterion. 

4. Experiments 
The discussion clearly indicated that in order to verify the 'inertia' hypothesis, one 

has to perform an experiment in which either M,or 8, (or both) is changed continuously, 
in order to force the initial reflexion RR or MR to undergo transition to MR or RR, 
respectively. Since changing 0 ,  seems more practical and promising it was decided 
to reflect a constant-velocity shock wave over curved wedges. 

The experiments were conducted on the IHSM 4 x 8 cm Pressure-Driven Shock 
Tube (Takayama, Honda & Onodera 1977). Three types of curved wedges (figure 6) 
were used. In the concave cylinder (model A ,  figure Ba), 0, increases continuously from 
0 to 90". I n  the convex cylinders (models B and C, figures 6 b and 6c, respectively), 19, 
decreases continuously from 90" to 0 in model B, and from 53.13" to 0 in model C. 
Consequently, while the transition MR -+ RR takes place in model A ,  the RR -+ MR 
transition occurs in models B and C .  

The incident shock wave Mach number range was 1.1 < M, < 4.0. The shock wave 
velocity was measured with pressure transducers (Kistler model 606) and a digital 
counter. The pressure transducers were located 12 cm apart, just ahead of the test 
section. The effects of the attenuation and acceleration of the shock wave were checked 
in the preparatory experiments. They were found to be negligible. 

Dry air a t  initial pressures of 3 < Po c 150 torr was used as test gas. Ben-Dor (1978) 
and Ben-Dor & Glass (1979) have shown recently that in the range M, < 6 the initial 
pressure does not influence the RR 2 MR transition line. Consequently, the initial 
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I 

(C) 

FIGURE 6. Scale drawings of the three different models used in the present study: (a) model A ,  
concave; ( b )  model B, convex; (c) model C, convex. 

pressure could be considered practically constant. The initial temperature To through- 
out all the experiments was about 300 K. 

The non-stationary phenomenon was recorded using shadowgraph and schlieren 
methods. A giant-pulse ruby laser with a 20 ns light-pulse width was used to obtain the 
instantaneous (single shot) photographs. For the continuous observation of the shock 
diffraction process an Imacon high-speed camera (John Hadland Model 700) was 
used, in both the framing and the streak modes. Many more details concerning the 
experimental set-up and technique were reported by Takayama & Kawauchi (1979). 

In previous experimental investigations, the value of 8 ,  at which transition occurred 
i.e., 8u,tr wa5 deduced by interpolating between many single-shot photographs, which 
were obtained by either changing 8 ,  for a fixed M,, or changing M, for a constant Ow. 
However, this kind of experiment always involves a small scatter in the shock-wave 
Mach number and the induced flow field behind it. Consequently, the determined 
value of Ozctr, inevitably involved some experimental errors. 

Bazhenova et al. (1968) applied the streak camera technique to study the oblique 
shock-wave diffraction over two-dimensional straight wedges. In their study the 
shape of the DMR was measured by using a straight slit, which was placed parallel to 
the direction of propagation of the incident shock wave. 
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In  the present experiments, curved slits, 0.6  and 0.7 mm wide were accurately 
placed on the test-section windows in a direction that coincides with the curved 
wedge surface. In this arrangement the exact point of transition along the wedge 
surface could be determined for each experiment. 

It is worth noting, that in order to increase the resolution (accuracy) in measuring 
the transition point (wedge angle) along the concave-curved wedge (model A ,  figure 
6 a ) ,  the image of the curved slit was rotated by 38" using an image rotator in front of 
the objective lens of the Imacon high speed camera. 

5. Results 
Typical instantaneous shadowgraphs of MR and RR over the concave (model A )  

and the convex (model B)  wedges are shown in figures 7 and 8, respectively. The inci- 
dent shock wave is moving from right to left. For model A (figure 7 ) ,  the resulted 
reflexion is initially a MR (figure 7 a) .  As the incident shock wave proceeds along the 
wedge, the reflexion undergoes transition to RR (figure 7 b ) .  In the case of model B 
(figure 8)) the opposite sequence of events is obtained. First a RR (figure 8a)  is formed, 
then the transition RR + MR takes place to result in a MR (figure 8 b ) .  Note that the 
wave interactions behind the RR shown in figure 7 ( b )  are no longer similar to  that 
shown in figure 8 (a) .  

Typical streak photographs as well as explanatory sketches of the shock wave 
diffraction over models A and B are shown in figures 9 (a)  and 9 (b ) ,  respectively. 

The transition MR --f RR is recorded on the streak photograph shown in figure 9 (a) .  
The length of the observation field, from the end of the concave wedge (point E ,  
figure 9a) is 74.6  mm. The sweeping speed of the streak is 8 mm ps-l. Since an image 
rotator was used with this model (see earlier remarks), the image of the curved 0 - 6  mm 
wide slit is inclined by 38" from its normal position, and the incident shock wave is 
seen to be moving from left to right, in the streak photograph. The two trajectories 
which are seen a t  the beginning of figure 9 ( a )  correspond to the Mach stem M and the 
slipstream S (figure 7 a ) .  The transition MR+RR occurs a t  point T where a trans- 
mitted shock I (incident shock wave of RR) and its reflected shock wave R appear. A 
clear change in the gradients of the trajectories of M and I is seen a t  the transition 
point T. A short time after transition takes place, some new trajectories appear in the 
streak photograph. These trajectories correspond to the previously mentioned shock- 
wave interactions behind the RR (figure 7 b ) .  

The transition RR +MR is recorded on the streak photograph shown in figure 9 ( b ) .  
The length of the observation field, from the beginning of the convex wedge (point 0, 
figure 9 b )  is 75 .9  mm. The sweeping speed of the streak is again 3 mmps-1. Since image 
rotators were not used for this model, the incident shock wave is moving from right to 
left. The two trajectories which are seen at the beginning of figure 9 (b)  correspond to 
the incident ( I )  and reflected (R) shock waves of the RR (figure 8a). While the trajec- 
tory of I is white, the trajectory of R is black. Despite the constant incident shock 
wave velocity, the trajectory of I looks as if the incident shock wave has accelerated 
at  the starting point 0. This is due to the finite width (0 .7  mm) of the slit. This finite 
width of the slit is also the reason for the broadening of the trajectory of R near the 
starting point 0. As the reflection moves along the wedge the trajectories of I and R 
approach each other asymptotically, until they converge at  the transition point T .  
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At this point, two new trajectories appear. One corresponds to the Mach stem M and 
the other to the slipstream S of the MR (figure 8 b ) .  Since the velocity of I is different 
from that of M the gradients of their trajectories are discontinuous a t  the transition 
point T. 

The foregoing description of the streak photographs indicates how powerful the 
present method is in precisely determining the point of transition (i.e., the value of 
Bwt, from R R  to MR and from MR to RR. The value of Owtr is obtained from: 

( 5 )  
1 
R Bwtr = sin-1 - + 0, 

where 8, is the angle by which the image of the slit is rotated with respect to  the 
orientation of the slit (8, = 38" for model A and 0" for models B and C), R is the 
radius of curvature of the surface of the model (R = 50 mm for model A and C and 
40 mm for model B )  and Z is the horizontal distance from the centre of the curvature 
of the cylinder surface C to  the transition point T (figure 9). 

Using the elementary-error estimation method, equation (5) results in : 

where A(#) is the absolute error associated with the measurement of the quantity '# '. 
Since 1 and R are of the same order of magnitude and A(R) < A(l), equation (6) can be 
reduced for practical purposes to: 

Finally, if A(Z) = 0.2 mm andA(8,) = lo, the maximum possible errors in calculating 
the transition angle from equation (6) are 1.3" for model A and 0.3" for models B 
and c for which 

The actual transition angle 8,L,tr as measured in the present experiments, as a 
function of inverse pressure ratio across the incident shock wave 6, for models A 
(squares), B and C (filled and open circles, respectively) are shown in figure 10. The 
transition lines corresponding to equations ( 2 )  [line A] and (1) [line B] are also drawn 
in figure 10. These lines are calculated for straight wedges. The solid lines are for a 
perfect diatomic gas (y = 5) and the dashed lines are for imperfect nitrogen in vibra- 
tional equilibrium (To = 300 K). It is seen that real gas effects become noticeable a t  
M, E 1.5 [ M i  = ( y -  1)/2y+ ( y +  1)/(2y5)]. Curves C and D are the R R  termination 
criterion as obtained by Heilig (1969) and Itoh & Itaya (1978) in their study of the 
R R  -+ MR transition over convex wedges, using Whitham's ray-shock theory. 

The experimental results clearly indicate that the RR-+MR and the MR-tRR 
transition are different. The higher the incident shock wave Mach number the greater 
the difference between these two transitions. At M, = 4 the difference in the transition 
angle 8u,t, is as much as 25" ! The experiments also indicate that 8u,t, does not depend 
on the curvature of the wedge surface, i.e. on dO,,/dx ( x  is the distance along the shock 
tube). (Compare experiments obtained by modeIsB and C.) The agreement between the 
experiments and curve A above which a steady or pseudo-steady MR cannot occur 
and curve B below which a steady or pseudo-steady R R  is theoretically impossible, 
is poor. This we believe is due to the fact that  curves A and B are for straight wedges 

= 0. 
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1 .o 0.8 0.6 0.4 0.2 0.0 

1 1 I I I 1  I l l  I l l  
1 .O 1.1 1.2 1.3 1.4 1.5 1.8 2.0 2.2 3.0 4.0 m 

FIGURE 10. Present experimental results of actual transition from MR -+ RR and from RR + MR 
in the 6, 6, plane and some theoretical transition lines : is the inverse pressure ratio across the 
incident shock wave; 8, is the wedge angle. Symbols: 0, experiments over model A ;  0, experi- 
ments over model B ;  0 ,  experiments over model C .  Solid lines, perfect diatomic gas (7 = 5);  
dashed lines, imperfect nitrogen in vibrational equilibrium. Line A ,  transition according to 
equation (2) ; line B, transition according to equation ( 1 )  ; line C ,  Heilig’s (1968) analysis for 
cylindrical wedges; line D, Ito & Itaya’s (1978) analysis for cylindrical wedges. 

I 

Ms 

whereas our experiments are for curved wedges. Nevertheless, the present experi- 
ments prove that in truly non-stationary flows the RR-tMR and the MR-tRR 
transitions are significantly different. 

As mentioned earlier, curve C shows Heilig’s (1969) analytical prediction of the 
termination of R R  over convex wedges. Heilig’s analytical prediction is in much 
better agreement with our R R  + MR experiments, than with the von Neumann (curve 
B )  prediction. Nevertheless, his predictions are only in fair agreement with our experi- 
ment which is estimated to have a maximum error of 0.3”. 
A modification of Heilig’s analysis was recently published by Itoh & Itaya (1978). 

Their prediction (curve D) is in a better agreement wit,h the present experiment, than 
that of Heilig. I n  the range M, < 1-35 (6 > 0-6) the agreement between curve D and 
our experiment is very good. For higher Mach numbers the agreement becomes pro- 
gressively worse. In  this range the actual eWtr is smaller than that predicted by Itoh & 
Itaya. It is worthwhile mentioning that It,oh & Itaya’s theory could be improved by 
including real gas effects which would shift their transition line (curve D) further down. 
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6. Discussion 
The present experimental results verify the hypothesis of Ben-Dor (1 978) and 

Ben-Dor & Glass (1979) that in truly non-stationary flows the transition RR -+ MR is 
indeed different from the transition MR -+ RR. 

In  view of this important finding it is of interest to examine the theoretical basis of 
the presently existing criteria (for the R R  MR transition) in steady or pseudo- 
steady flow, as whether or not they can explain the present results in non-stationary 
flows. 

The actual MR + R R  transition occurs beyond the limit predicted by the detach- 
ment criterion as modified by Heilig (1 969) and Itoh & Itaya ( I  978) for non-stationary 
flows. Consequently, the detachment criterion cannot explain the present experi- 
ments. 

MR transition, indicate that it follows the detach- 
ment criterion as modified by Heilig (1969) and Itoh & Itaya (1978) for convex wedges. 
Therefore, it does not agree with the mechanical equilibrium concept which is based on 
the idea that pressure discontinuities cannot exist during transition unless a com- 
pression wave is generated. Although the present experiments did not reveal any 
compression wave there is a possibility that the resolution of the present experiments 
was not good enough to indicate clearly whether or not a compression wave exists 
during transition. Consequently, although there is evidence that the present experi- 
ments contradict the mechanical equilibrium concept, this concept cannot be dis- 
carded. 

The length scale concept of Hornung et al. (1 979) is contradicted by our RR -+ MR 
experiments. Their criterion implies that the transition should take place the first 
time a length scale is available a t  the reflexion point. However, owing to our use of 
curved wedges, a length scale (radius of curvature) is available a t  the reflexion point 
any time. Consequently, the R R  + MR transition should have followed line A (figure 
10) rather than line D. 

The foregoing discussion indicates the significance of our findings. It suggests that 
the presently existing concepts for the RRT, MR transition, i.e., detachment, mech- 
anical equilibrium and length scale, cannot explain the phenomenon in truly non- 
stationary flows. 

It is our belief that a general criterion (concept) which will actually predict the 
RR 2 MR transition in steady, pseudo-steady and non-stationary flows should exist. 
Consequently, upon resolving the previously mentioned disagreement between 
Henderson & Lozzi (1975) and Hornung et al. (1979) [see table 13 this general criterion 
should reduce in (figure 10): 

The present results for the RR 

(1) steady flows, to line A ; 
(2)  pseudo-steady flows, to line A if Henderson & Lozzi are correct, or line B if 

(3) non-stationary flows, to line D for convex wedges and a line which will agree 
Hornung et al. are correct; 

with the present results for concave wedges. 
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7. Conclusion 
An experimental investigation on the IHSM 4 x 8 cm shock tube of the RR Z MR 

transition in truly non-stationary flows, revealed that the transitions RR -+ MR and 
MR + RR are different. 

While verifying the hypothesis of Ben-Dor (1978) and Ben-Dor & Glass (1979), the 
results suggest that the presently existing concepts for the RR 2 MR transition 
cannot serve as general criteria, since they cannot explain the phenomenon in non- 
stationary flows. Consequently, the question ‘What is the general criterion (concept) 
that explains the RR MR transition in steady, pseudo-steady and non-stationary 
flows? ’ is reopened. 

The authors would like to express their appreciation to Professor M. Honda of the 
Institute of High Speed Mechanics, Tohoku University, Japan, and Professor I .  I .  
Glass of the Institute of Aerospace Studies, University of Toronto, Canada, for their 
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(I '  ) ( 1 1 )  

FIGITRE 1. Illustration of four possible oblique shock-wave reflexions. (1nterferogra.ms are on the 
left and exp1anat)ory sketches on t>he right.) The interferograms ( A  = 6913 a) were taken with 
a 33 cm diameter Mach-Zehnder interferometer in the UTIAS 10 x 18 cni Hypervelocity Shock 
Tube for nitrogen a t  an initial pressure Po z 15 torr and temperature To w 300 K. I ,  I,, incident 
shock waves: R, R,, reflected shock waves; M ,  41,. Mach stems; S, A',, slipstreams; T, T I ,  triple 
points; x, x', triple point trajectory angles; (0) to (5 ) ,  thermodynamic states. (a )  Regular 
reflexion (RR), wedge angle Otc = 60", shock Mach number = 4.68. ( 0 )  Single-Mach reflexion 
(SMR), Oqc = lo", &Is = 1.73. (c) Complex-Mach reflexion (VMR), H,,, = 30". Ma = 6.90. ( t l )  
Double-Mach reflexion (DMR), O,(, = 40", 4fs = 3.76. 

BEN-DOR. TAKAYAMA AND KAWAUCHI (Facing 1,. 160) 
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(b)  

Frc:rrnE 7.  Instantaneous shadowgraphs illustrating RR aiid MR ovcr a roncave wedge (motlcl 
A )  i n  dry air. ( a )  Ptlarh rrflexion (Mlt), M, = 1.40; ( b )  ltegnlur rrflrxion (Rlt), Nr, = 1.40. 

HEN- r)OI<, T.\IiAYA4MA AND KAWAUCHI 
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(b)  

FIGURE 8. Instantaneous shadowgraphx illustrating I$R and RIK over a convcx urdgo (motlcl B )  
in dry air. ( a )  Rogular. reflexion (RR), M ,  = 1.40. ( b )  Mach reflexion (MK) ,  M ,  = 1 .40 .  
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X (mm) 
(a)  

FIC:URE 9. Streak phot>ographs (on the left) and explanatory sketches (on the right) illustrating 
act,ual transitions. I ,  incident shock wave in R,R ; R, reflected shock wave in RR ; M ,  Mach &ern 
in MR ; 8, slipstream in MR ; T, trarisit'ion point; C,  centre of t'he cylindrical surface; R, radius of 
curvature; I, horizontal distance between C and T ;  O,,,, t'ransition wedge angle. (a )  JlR + RR 
(model A ) ,  ill, = 2.19; ( h )  RR + MR (model B) ,  AfS = 2.80. 
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